custom header test

Size Ratio

Usage

size_null_model(speciesData, algo = "size_uniform", metric = "var_ratio", nReps = 1000, rowNames = TRUE, saveSeed = FALSE, algoOpts = list(), metricOpts = list())

Arguments

speciesData
a dataframe
algo
the algorithm to use, must be "size_uniform", "size_uniform_user", "size_source_pool", "size_gamma"
metric
the metric used to caluclate the null model: choices are "min_diff", "min_ratio", "var_diff", "var_ratio"; default is Var.Ratio
nReps
the number of replicates to run the null model.
rowNames
Does your dataframe have row names? If yes, they are stripped, otherwise FALSE for data that has no row names
saveSeed
TRUE or FALSE. If TRUE the current seed is saved so the simulation can be repeated
algoOpts
a list containing all the options for the specific algorithm you want to use. Must match the algorithm given in the `algo` argument
metricOpts
a list containing all the options for the specific metric you want to use. Must match the metric given in the `metric` argument

Description

Create a size Ratio null model

Examples

## <strong>Not run</strong>: # ## Run the null model # rodentMod <- size_null_model(dataRodents) # ## Summary and plot info # summary(rodentMod) # plot(rodentMod,type="hist") # plot(rodentMod,type="size") # # ## Uniform Size model with user inputs # rodentMod2 <- size_null_model(dataRodents,algo="size_uniform_user", # algoOpts = list(userLow = 3,userHigh=15)) # summary(rodentMod2) # plot(rodentMod2,type="hist") # plot(rodentMod2,type="size") # # ### Source pool model # # rodentMod_sp <- size_null_model(dataRodents,algo="size_source_pool", # algoOpts = list(sourcePool = runif(dim(dataRodents)[1],1,15))) # # summary(rodentMod_sp) # plot(rodentMod_sp,type="hist") # plot(rodentMod_sp,type="size") # # ## <strong>End(Not run)</strong>