custom header test

Co-Occurrence Null model

Usage

cooc_null_model(speciesData, algo = "sim9", metric = "c_score", nReps = 1000, rowNames = TRUE, saveSeed = FALSE, burn_in = 500, algoOpts = list(), metricOpts = list())

Arguments

speciesData
a dataframe in which rows are species, columns are sites, and the entries indicate the absence (0) or presence (1) of a species in a site. Empty rows and empty columns should not be included in the matrix.
algo
the algorithm to use, must be "sim1", "sim2", "sim3", "sim4", "sim5", "sim6", "sim7", "sim8", "sim9", "sim10"
metric
the metric used to caluclate the null model: choices are "species_combo", "checker", "c_score", "c_score_var", "c_score_skew", "v_ratio"; default is "c_score"
nReps
the number of replicates to run the null model.
rowNames
Does your dataframe have row names? If yes, they are stripped, otherwise FALSE for data that has no row names
saveSeed
TRUE or FALSE. If TRUE the current seed is saved so the simulation can be repeated
burn_in
The number of burn_in iterations to use with the simFast algorithm
algoOpts
a list containing all the options for the specific algorithm you want to use. Must match the algorithm given in the `algo` argument
metricOpts
a list containing all the options for the specific metric you want to use. Must match the metric given in the `metric` argument

Description

Create a Co-Occurrence null model

Examples

## <strong>Not run</strong>: # # ## Run the null model # finchMod <- cooc_null_model(dataWiFinches, algo="sim1",nReps=1000000,burn_in = 500) # ## Summary and plot info # summary(finchMod) # plot(finchMod,type="burn_in") # plot(finchMod,type="hist") # plot(finchMod,type="cooc") # # ## Example that is repeatable with a saved seed # finchMod <- cooc_null_model(dataWiFinches, algo="sim1",saveSeed = TRUE) # mean(finchMod$Sim) # ## Run the model with the seed saved # # finchMod <- cooc_null_model(dataWiFinches, algo="sim1",saveSeed=T) # ## Check model output # mean(finchMod$Sim) # # reproduce_model(finchMod$Sim) # # finchMod <- cooc_null_model(dataWiFinches, algo="sim1") # ## Check model output is the same as before # mean(finchMod$Sim) # reproduce_model(finchMod$Sim) # # # ## <strong>End(Not run)</strong>